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Abstract 

This study had two aims. Firstly, we wanted to model the effects of the percentage of Eudragit RS PO
and compression pressure as the most important process and formulation variables on the time
course of drug release from extended-release matrix aspirin tablets. Secondly, we investigated the
possibility of predicting drug stability and shelf-life using an artificial neural network (ANN). Ten
types of matrix aspirin tablets were prepared as model formulations and were stored in stability
chambers at 60°C, 50°C, 40°C and 30°C and controlled humidity. Samples were removed at prede-
fined time points and analysed for acetylsalicylic acid (ASA) and salicylic acid (SA) content using
stability-indicating HPLC. The decrease in aspirin content followed apparent zero-order kinetics. The
amount of Eudragit RS PO and compression pressure were selected as causal factors. The apparent
zero-order rate constants for each temperature were chosen as output variables for the ANN. A set
of output parameters and causal factors were used as training data for the generalized regression
neural network (GRNN). For two additional test formulations, Arrhenius plots were constructed from
the experimentally observed and GRNN-predicted results. The slopes of experimentally observed and
predicted Arrhenius plots were tested for significance using Student’s t-test. For test formulations,
the shelf life (t95%) was then calculated from experimentally observed values (t95% 82.90 weeks), as
well as from GRNN-predicted values (t95% 81.88 weeks). These results demonstrate that GRNN net-
works can be used to predict ASA content and shelf life without stability testing for formulations in
which the amount of polymer and tablet hardness are within the investigated range. 

A pharmaceutical formulation is composed of several formulation factors and process vari-
ables. Numerous responses relating to the usefulness, drug release and stability, as well as
safety, must be optimized simultaneously. This is called a multi-objective optimization
problem. Where an explicit physical model cannot be built because of unclear correlations
between causal factors and responses, mathematical methods such as artificial neural net-
works (ANNs) may be useful. An ANN is an intelligent non-linear mapping system built to
loosely simulate the functions of the human brain. An ANN model consists of many nodes
and their connections. Its capacity is characterized by the structure, transfer function and
learning algorithms (Lippmann 1987; Erb 1993). Because of their model independence,
non-linearity, flexibility, and superior data fitting and prediction ability, ANNs have gained
interest in the pharmaceutical field in the past decade. ANNs have been used to solve vari-
ous problems such as product development (Takayama et al 2000; Ibric et al 2002; Plumb
et al 2002; Kachrimanis et al 2003), quantitative structure–activity relationships (Aoyama
et al 1990; Agrafiotis 2002; Huuskonen 2003), quantitative structure–pharmacokinetic rela-
tionships (Hussain et al 1993; Gao et al 2002), estimation of diffusion coefficients (Jha et al
1995), prediction of the permeability of skin (Lim et al 2002; Degim et al 2003) and Caco-2
cells (Fujiwara 2002), and prediction of mechanisms of drug action (Weinstein 1992). How-
ever, there are no reports in the literature of using ANNs to predict the drug stability and
shelf life of pharmaceutical formulations. 

In our previous study, we used an ANN to optimize drug release from an extended-
release aspirin formulation (Ibric et al 2002). Eudragit RS PO (the matrix substance) and
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compression pressure (expressed as tablet hardness) were
identified as the most important (causal) factors responsible
for cumulative percentage of aspirin released in 8 h. An opti-
mization method using a generalized regression neural net-
work (GRNN) was used to define extended-release matrix
aspirin tablets with optimum release behaviour. The optimum
solution estimated with GRNN was formulation with 2.5%
Eudragit RS PO and tablet hardness of 60 N. Release profiles
predicted by the GRNN correlated well with experimental
values. This satisfactory prediction by the GRNN of drug
release for test and ‘optimal’ formulations clearly shows the
applicability of GRNN in modelling extended-release tablet
formulations. 

The objective of the current study was to evaluate the
effect of the percentage of Eudragit RS PO as matrix sub-
stance and compression pressure (i.e. tablets hardness) on the
time course of drug release from the formulation, and to
investigate whether an ANN can be used to predict drug sta-
bility and shelf life. 

Materials 

Acetylsalicylic acid (ASA) was Ph. Eur. grade. Eudragit RS
PO was kindly supplied by Rhom Pharma (Darmstadt,
Germany); Avicel PH 112 (FMC Co., Philadelphia, PA,
USA); Aerosil 200 (Degussa, Frankfurt, Germany), Pruv
(JRS Pharma, Rosenberg, Germany) and talc (Ph. Eur grade)
were used in model formulations. 

Preparation of aspirin tablets 

As model formulations, ten kinds of ASA tablets were
selected according to the two-factor spherical second-order
central composite design (Table 1). The amounts of Eudragit
RS PO (X1) and compression pressure, expressed through tab-
let hardness, (X2) were selected as causal factors. The amount
of ASA was fixed at a value of 325 mg per tablet (tablet
weight 400 mg). The amount of Aerosil 200, Pruv and talc
were fixed at 2, 4 and 6 mg per tablet, respectively. 

Tablets were prepared using a direct-compression method.
All ingredients were weighed accurately according to the
experimental design and mixed well in a polyethylene bag.
Flat-faced punches with a diameter of 10 mm were used to

compress the powder mixture, using an eccentric compress-
ing machine (EKO Korsch, Berlin, Germany). Tablet hard-
ness was measured using a Erweka TBH 28 hardness tester
(Erweka GmbH, Heusenstamm, Germany). Values presented
are the average of 20 measurements. 

Trials were performed in random order. All of the ingredi-
ents used in this study came from the same batches, and the
same procedures and equipment were used throughout the
production and testing of the tablets. 

Stability testing 

All formulations were made on the same day in controlled
ambient conditions (20°C, 20% relative humidity), packed in
brown-glass containers with a desiccant and stored in stability
chambers at different temperatures: 60°C, 50°C, 40°C or
30°C, under controlled humidity (10%). Samples were taken
at predefined time points and the ASA and salicylic acid (SA)
content was measured using stability-indicating HPLC. Dur-
ing the stability test, the ASA and SA content in tablets was
measured every week for 4 weeks for samples stored at 60°C,
every week for 6 weeks for samples stored at 50°C, at 2, 4, 6,
8, 10 and 12 weeks for samples stored at 40°C, and every
month for 6 months for samples stored at 30°C. 

HPLC procedure 

The HPLC procedure used the external standard method, and
areas under the peaks were used for calculations. We used an
Econosil RP-18, 250 × 4.6 mm column (Alltech Associates,
Inc., Deerfield, IL, USA) and an injection volume of 20 mL.
The mobile phase was a 45:55 mixture of acetonitrile and
water (pH 2.5) delivered at a flow rate of 1.5 mL min−1.
Detection was at 230 nm. 

Data analysis 

Potencies (C) of aspirin as a function of the time (t) were con-
structed for each formulation, at each temperature (T). The
results obtained fitted the function C = f (t,T), indicating that
the decrease in aspirin content follows apparent zero-order
kinetics (r2 > 0.9). Constants of apparent zero-order kinetics
for each temperature were chosen as the output variables for
the ANN (Y1 = k60, Y2 = k50, Y3 = k40, Y4 = k30). Test formula-
tions (T1 and T2) were prepared to validate the predictive
ability of the ANN (Table 2).

Computational methods 

We used commercially available Statistica Neural Networks
software (StatSoft, Inc., Tulsa, OK, USA) throughout the
study. A GRNN was used for modelling and optimization of
extended-release aspirin tablets. GRNNs were introduced by
Specht in 1991 and estimate the most probable value for con-
tinuous dependent values of a given dataset. They promote
the probability density functions of the given patterns and
finally attribute to them the value to which they most belong
(Specht 1991). GRNNs are feed-forward networks comprised
of four layers. The input layer comprises a variable number of
neurons, which is equal to the number of independent features

Materials and Methods 

Table 1 Central composite design: factors and responses 

Factors Levels used 

−21/2 −1 0 +1 +21/2

X1 (% Eudragit RS PO) 2% 2.58% 4% 5.41% 6%
X2 (tablet hardness, N) 25 35 57.5 80.4 90 

Responses      
Y1 = k60 (rate constant of apparent zero-order kinetics at 60°C)
Y2 = k50 (rate constant of apparent zero-order kinetics at 50°C)
Y3 = k40 (rate constant of apparent zero-order kinetics at 40°C)
Y4 =  k30 (rate constant of apparent zero-order kinetics at 30°C)
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the network is trained on. The normalized input vector is cop-
ied onto the pattern units in the pattern layer, each represent-
ing a training case. An exponential activation function is
applied, and the corresponding activation level is forwarded
to the summation unit, where the density estimate of each pat-
tern of each group or possible value is summarized. Finally,
Bayesian theory is used to define the fourth layer. The main
advantage of GRNNs is that they involve a single-pass learn-
ing algorithm and are therefore much faster to train than the
well-known back-propagation paradigm (Specht 1990). Fur-
thermore, they differ from classic neural networks in that
every weight is replaced by a distribution of weights. This
enables a large number of combinations of weights to be
explored, and the exploration is less likely to end in a local
minimum (Bruneau 2001). Therefore, no test and verification
sets are necessary and, in principle, all available data can be
used for the network training. In a GRNN model, it is pos-
sible to select the number of units (nodes) in the second radial
layer, the smoothing factor (which controls the deviation of
the Gaussian kernel function located at the radial centres),
and the clustering algorithm (e.g. subsampling, K-means or
Kohonen). 

Initially, in the radial layer, the number of hidden units
varied from 1 to 10, using smoothing factor 0.1 and the K-
means clustering algorithm. To select the optimal GRNN
model, the observed versus predicted responses were shown
in the regression plots drawn for the two test formulations,
which were excluded from the ten-formulation data set. The
GRNN model that yielded a regression plot with a slope and
squared correlation coefficient (r2) that was closest to 1.0 was
selected as the optimal GRNN model. A sum-squared error
function was used in the network training. (The error is the
sum of the squared differences between the target and actual
output value on each output unit.) 

Learned GRNN was used for modelling, simulation and
optimization of the model extended-release formulation in the
following ways: testing experimental points in experimental
fields; searching for the optimal solutions; presenting
response surfaces (or contour plots). To ensure that the results
of the trained network are real and that there are no artifacts

of the training process, an external validation can be done by
predicting the stability (i.e. ASA content) and shelf life for two
additional test formulations. The results obtained experimen-
tally can then be compared with those predicted by the network. 

Stability study 

The ASA and SA content of samples of tablets stored at dif-
ferent temperatures and controlled humidity was measured
using stability-indicating HPLC. Changes in ASA and SA
content in samples stored at 50°C and at 60°C for 4 weeks
and in samples stored at 40°C and 30°C for 6 months are pre-
sented in Table 3.

The US Pharmacopeia monograph for aspirin extended-
release tablets allows a variation in ASA content of 5%, and
in SA as impurity of 3%. The results show that changes in
ASA and SA content are within pharmacopoeia limits for all
tablet formulations, except for formulation F5, where the
ASA content was 93.99% after 4 weeks’ storage at 60°C.
(The SA content (2.43%) was acceptable.) 

Minimal degradation of active substance for all tablet for-
mulations and in all storage conditions is in accordance with
the results published by Vachon and Nairn (1997, 1998).
Electrostatic association of the drug with the charged quater-
nary residues in the polymer may be responsible for the
observed stability of ASA. 

GRNN structure 

The two causal factors corresponding to different percentage
of Eudragit RS PO (X1) and tablet hardness (X2) were used as
each unit of the input layer. Constants of apparent zero-order
kinetics were used as output layers (four). A set of outputs
and causal factors was used as tutorial data and fed into the
computer. A GRNN was chosen as the network type. Several
training sessions were conducted using different numbers of

Table 2 Inputs and outputs used for network training (F1–F10) and network testing (T1 and T2) 

k60/50/40/30 are the rate constant of apparent zero-order kinetics at 60/50/40/30°C.

 Formulation Inputs Outputs 

% Eudragit RS PO Tablet hardness (N) k60 (s−1) k50 (s−1) k40 (s−1) k30 (s−1) 

F1 5.41 35 0.975 0.8193 0.1408 0.1243 
F2 6 57.5 1.548 0.8641 0.1867 0.1663 
F3 2.58 80 1.424 0.7239 0.2269 0.2047 
F4 5.41 80 0.824 0.4468 0.1999 0.1249 
F5 4 90 1.739 0.6489 0.1353 0.0785 
F6 2.58 35 0.917 0.5900 0.0811 0.0591 
F7 4 57.5 1.109 0.6921 0.2196 0.1524 
F8 4 57.5 1.110 0.6139 0.1995 0.1267 
F9 2 57.5 0.954 0.6146 0.1637 0.1492 
F10 4 25 1.265 0.8411 0.1106 0.1087 
T1 2.5 60 0.877 0.6029 0.1578 0.1146 
T2 5.5 30 1.053 0.6243 0.1642 0.1172 

Results and Discussion 
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units in the hidden layer in order to determine the optimal
GRNN structure. Test data using the results from the two test
formulations (T1 (2.5% Eudragit RS PO, 60 N) and T2 (5.5%
Eudragit RS PO, 30 N)) were prepared to validate the predic-
tion ability of the ANN. 

Regression plots were drawn to show the predicted and
observed responses for the two test formulations and the
slopes and r2 values determined. Figure 1 is a representative
plot of the slopes and r2 values for the GRNN model as a
function of the units number of the hidden layer. On the basis
of the data shown in Figure 1, the optimized GRNN model
consisted of nine units in the radial hidden layer, since both
the slope and r2 values approached 1.0. 

The learning period was completed when the minimum
value of the root mean square (RMS) was reached: 

where  yi
p is the experimental (observed) response,  yi

m is the
calculated (predicted) response and n is the number of experi-
ments. The selected ANN structure had four layers: the first
layer had two input units, the second layer had nine hidden units
(with negative exponential activation and radial postsynaptic
function), the third layer had five units, and the fourth layer had
four output units. Nine units in a hidden layer were needed to
obtain an excellent prediction of the response variable. 

GRNN training 

Training set (inputs and outputs F1–F10, Table 2) was fed
into the computer, and after assignment of radial units in the
second layer of the GRNN using the K-means clustering
algorithm, the predicted outputs were obtained (Table 4).

GRNN testing 

For two test formulations, Arrhenius plots were constructed
from experimentally observed and GRNN-predicted results.
For the T1 formulation: experimentally observed ln(k) =
−5.8298 103/T + 17.101 (r = 0.956) and GRNN-predicted
ln(k) = −5.7174 103/T + 16.705 (r = 0.959). For the T2 formu-
lation: experimentally observed ln(k) = −6.2355 103/T + 18.471
(r = 0.944) and GRNN-predicted ln(k)= −6.1288 103/T + 18.06
(r = 0.953). 

Correlation plots of predicted versus experimentally
obtained apparent zero-order constants for the test formula-
tions (T1, T2) were constructed. Values for the correlation
coefficients obtained were greater than 0.99 (r2 = 0.998), indi-
cating a strong correlation between the predicted and experi-
mentally observed apparent zero-order constants for the test
formulations. 

The slopes of the experimentally observed and predicted
Arrhenius plots were tested using Student’s t-test. The
observed values of ttest1 = 0.0269 and ttest2 = 0.01378 are lower
than t2, 0.05 = 2.920), indicating that there was no significant
difference between these plots. It further indicates excellent

Table 3 Acetylsalicylic acid (ASA) and salicylic acid (SA) content after 4 weeks at 50°C and 60°C and after 6 months at 40°C and 30°C for the for-
mulations (F1–F10) and test formulations (T1 and T2) 

Data are mean ± s.d of three measurements 

 
 

50°C 60°C 40°C 30°C 

ASA (%) SA (%) ASA (%) SA (%) ASA (%) SA (%) ASA (%) SA (%) 

F1 97.05 ± 0.06 0.750 ± 0.008 97.82 ± 0.03 2.21 ± 0.02 98.29 ± 0.08 0.850 ± 0.009 99.07 ± 0.03 0.427 ± 0.010 
F2 97.32 ± 0.08 0.779 ± 0.009 95.17 ± 0.03 2.44 ± 0.01 97.56 ± 0.08 0.906 ± 0.010 97.35 ± 0.04 0.466 ± 0.012 
F3 97.17 ± 0.06 0.663 ± 0.010 95.12 ± 0.04 1.84 ± 0.01 96.59 ± 0.07 0.817 ± 0.0085 96.64 ± 0.06 0.478 ± 0.010 
F4 98.45 ± 0.05 0.712 ± 0.008 97.17 ± 0.05 3.15 ± 0.01 96.33 ± 0.08 0.886 ± 0.011 97.54 ± 0.06 0.403 ± 0.08 
F5 97.27 ± 0.05 0.695 ± 0.010 93.99 ± 0.04 2.43 ± 0.02 97.7 ± 0.04 0.918 ± 0.010 98.87 ± 0.06 0.82 ± 0.07 
F6 99.91 ± 0.08 0.652 ± 0.011 98.12 ± 0.05 2.42 ± 0.02 100.46 ± 0.05 0.706 ± 0.011 100.56 ± 0.02 0.365 ± 0.08 
F7 98.12 ± 0.05 0.706 ± 0.012 97.30 ± 0.05 2.25 ± 0.02 97.08 ± 0.07 0.785 ± 0.009 98.76 ± 0.01 0.444 ± 0.09 
F8 99.58 ± 0.04 0.711 ± 0.011 96.18 ± 0.06 2.18 ± 0.01 97.05 ± 0.06 0.788 ± 0.008 98.76 ± 0.03 0.455 ± 0.08 
F9 98.45 ± 0.08 0.620 ± 0.009 97.43 ± 0.07 2.10 ± 0.01 97.86 ± 0.06 0.707 ± 0.012 97.76 ± 0.02 0.446 ± 0.07 
F10 97.95 ± 0.07 0.612 ± 0.009 95.2 ± 0.05 1.70 ± 0.01 98.2 ± 0.08 0.790 ± 0.010 98.6 ± 0.04 0.339 ± 0.08 
T1 98.96 ± 0.08 0.638 ± 0.008 98.34 ± 0.04 2.14 ± 0.01 98.56 ± 0.08 0.726 ± 0.009 99.09 ± 0.02 0.455 ± 0.09 
T2 98.45 ± 0.09 0.767 ± 0.012 96.20 ± 0.06 2.22 ± 0.01 97.08 ± 0.08 0.901 ± 0.010 98.75 ± 0.04 0.385 ± 0.010 
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Figure 1 Plot of the regression slopes and squared correlation coeffi-
cients (r2) for the two test formulations as a function of the number of
hidden layer units using a GRNN model with 1–10 layer units. 
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ability of the GRNN to predict ASA content for each formu-
lation of matrix tablets with a polymer content of 2–6% and
tablet hardness of 25–90 N. 

Predicting the ASA content of the test 
formulation T1 

In our previous paper (Ibric et al 2002), formulation T1 (2.5%
Eudragit RS PO, 60 N) was chosen as the optimal formulation
in terms of drug release. Using Arrhenius plots, constants of
apparent zero-order kinetics of degradation at 20°C were cal-
culated from experimentally observed values and from
GRNN-predicted values. The shelf life was calculated to be
82.90 weeks from the experimentally observed values and
81.88 weeks from the predicted values.

Conclusion

The values for shelf life calculated from experimentally
observed values and the GRNN-predicted values are very
close, showing that there is no significant difference between
GRNN-predicted and experimentally observed shelf life. 

The satisfactory prediction of drug content for the training
and test formulations by the GRNN in this study clearly
shows the applicability of a GRNN in modelling the stability
of extended-release tablet formulations. These results demon-
strate that it would be possible, using GRNN, to predict drug
content and shelf life for every formulation where the amount
of polymer and the tablet hardness are within the investigated
range, without performing additional stability testing. 
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